
CS229 Final Project: Predicting News Preferences

Rory MacQueen, Deniz Kaharamaner, Gil Shotan

December 16th 2011

Abstract

Our goal was to predict news stories that
a user would read based on his or her
reading history. We came up with a set
of features for each story, including tf-idf
values of the words in the title, the feed
from which the story originated, and a
measure of how many similar users read
that story. Finally we weighted training
stories more heavily if a user both read
and clicked through that story. We fed
this matrix of features into a linear Ker-
nel SVM[1] and achieved an F1 score[2] of
0.45. While we consider the results to be
satisfactory, we suspect the main obstacle
preventing us from achieving higher accu-
racy was our inability to accurately de-
termine which stories a user was exposed
to, and, therefore, to determine whether a
‘non-read’ was because she was not inter-
ested in the story or simply because she
did not see it.

Introduction

Mobile devices have revolutionized the
way people consume news. Over the past
three years, the proportion of web time
spent reading news has doubled[4]. More-
over, as of 2010, people spend the same
amount of time on their mobile devices
as they do reading newspapers and mag-

azines combined[4]. This digitization of
news consumption opens up an opportu-
nity for machine learning algorithms to
improve users’ reading experience.

Figure 1: Screenshot of the pulse applica-
tion

This project applies a machine learn-
ing algorithm to predict which stories
users will read based on each user’s read-
ing history. The ultimate goal is to to
tailor a news feed to a particular user’s

1

CS229 Final Project Predicting News Preferences

interest based on his or her past reading
habits.

Method

Our data set was three-fold. First, we
had a file consisting of all stories available
for the month of August 2011. Second,
we had a file containing ‘reads’, showing
which stories were read by each of our
1000 users. Third, we had a file showing
which stories were clicked through by each
of our 1000 users. One of our biggest chal-
lenges was taking this large data set, and
determining which stories each user was
actually exposed to. The two factors de-
termining exposure were timestamps and
feeds. We decided that it is reasonable
to assume that any day on which a user
had no time-stamped ‘read’ stories indi-
cated a day on which a user did not even
log in; hence that user was not exposed to
any of that day’s stories. We therefore did
not include those stories in that particu-
lar user’s training matrix. Furthermore,
we used one scan through the whole data
set to determine which feed (e.g. Wall
Street Journal, TechCrunch etc.) each
user was subscribed to. This allowed us
to exclude from the user’s matrix any sto-
ries from other feeds. We used a set of
5000 stories and 500 users as a working
development set. We evaluated our per-
formance iteratively - by increasing our
training set one day at a time. At each
iteration we attempted to predict the sto-
ries read by each user on the following day.
Concretely, we started by training on day
1, and tested on day 2; then trained on
days 1, 2 and tested on day 3 etc. Even-
tually, we tested our final system on the
other set of 500 users and 50,000 stories.
(we did not include all stories due to long
duration of training).

Algorithm

We used a linear kernel SVM algorithm[3]
to classify our data into reads and non-
reads for a given user. To account for
outliers and the problem of non-linearly
separable data, we use L1 regularization
on the algorithm. We ran the algorithm
several times on development data, vary-
ing the parameter C, which controls the
cost to be incurred for having examples
with functional margin less than 1. We
found that value of 100 for C was opti-
mal. We also experimented with differ-
ent weights for the categories, read and
non-read, represented in the algorithm as
1 and 0 respectively. A higher weight for a
given category tells the algorithm that it
is more important that we get the classi-
fication of this category correct, even if it
might mean classifying some of the other
category’s points incorrectly. We assigned
a higher weight (10) to the reads category,
since, intuitively in this scenario, it seems
to be more important to have a higher re-
call at the expense of precision.

NLP

We started by representing a story only
using the term frequency and inverse doc-
ument frequency of the words comprising
its title.

tf-idf = tf(t,d)× log
|D|

|{d : t ∈ d}|

where |D| is the number of documents in
our corpus We chose a set of 10,000 tokens
to comprise our initial feature space based
on their frequency in more than 200,000
stories. As with most natural language
corpi, the words in a data set of news sto-
ries are distributed approximately accord-
ing to Zipf’s law[5] that is, the frequency

MacQueen, Kaharamaner, Shotan

CS229 Final Project Predicting News Preferences

of any word is inversely proportional to
its rank in the frequency table. In other
words, the most frequent word will occur
approximately twice as often as the sec-
ond most frequent word, three times as
often as the third most frequent word, and
so on. Furthermore, we excluded ‘stop
words’ from our vocabulary since they
have little contextual significance. We
also applied Porter’s Stemmer to reduce
similar words to their common morpho-
logical root by applying linguistic rules.
Hence the words ‘invade’, ‘invading’ and
‘invaded’ will all be mapped to a common
root, namely ‘invade’, which is what we
eventually stored in our training matrix.
After this initial phase of pre-processing,
we chose the most frequent roots as our
set of tokens. We ended up with a very
sparse training matrix, as each story con-
tains only several words, and only a frac-
tion of which appeared in our dictionary.
Our preliminary results revealed a high
bias in our hypotheses, which motivated
us to seek other features with higher pre-
dictive value.

Incorporating Feeds

We hypothesized that not all feeds are
treated equally by a given user. Most
users are subscribed to over 20 feeds,
whereas an individual user can only view
3 feeds at any given moment on his iPhone
screen. An inverse correlation likely ex-
ists between the probability that a story
will be viewed and the amount of scrolling
necessary to reach it. Furthermore, we
hypothesized that the ability of a par-
ticular feed to match a user‘s preference
may vary significantly. Some feeds may
produce stories that match a user’s pref-
erence more frequently than others. We
therefore decided to include the feeds of a

story as a feature. A scan of the data con-
firmed our hypothesis that indeed, some
feeds are more popular than others for a
given user.

Clustering

Another method we employed to gather
insight into a user’s preferences was to
view the reading patterns of similar users.
Our conjecture was that if the reading
patterns of a group of users has been sim-
ilar in the past, they are likely to be sim-
ilar in the future as well. Intuitively, it
is easy to believe that a certain group of
users is more interested in sports, others
in politics, etc. To test our conjecture we
use Principal Component Analysis[6]. We
defined the preferences matrix P ∈ Rm×n,
where m is the number users and n is the
number of stories we used for this pur-
pose, where each component of P con-
tained one of 3 values:

Pij =

0 if user i did not read story j

1 if user i read story j

2 if user i clicked on story j

We implemented PCA on the matrix P to
map the high-dimensional user vectors to
a three-dimensional space that we could
visualize (see figure 2). This visualization
suggested that users fall into 3 groups, or
clusters. We implemented kMeans[7] clus-
tering on our development users. Each
cluster was represented as a vector in Rn,
which was computed as

c(q)j =
∑
i

PijI{user i belongs to cluster q}

and where c(q)j is the number of users in
cluster q who read story j. During test-
ing, we had to assign each of our new test
users to one of these three pre-computed

MacQueen, Kaharamaner, Shotan

CS229 Final Project Predicting News Preferences

clusters. Each user was represented by
a vector Pi ∈ Rn, which is a row in the
matrix P . We assigned each user to the
cluster which had the smallest Euclidean
distance from its center to the user’s vec-
tor.

ki = arg min
q
||Pi − c(q)||

where ki is the cluster assignment for
the user i. Euclidean distance ended
up being a more accurate measure of
similarity between a user and a cluster
than cosine distance; cross-validation on
the training data showed that Euclidean
distance method correctly assigned users
with more than 90% accuracy. Having as-
signed a test user to a cluster, we were
now able to add to each story of this
user’s feature matrix an additional fea-
ture, whose value was the number of users
in the same cluster who read that story.
The addition of this clustering feature im-
proved results by approximately 0.05.

−5

0

5

10

0

5

10

15

20

25

−2

0

2

4

6

8

10

12

14

16

18

Figure 2: Principal Component Analysis
showing 3-dimensional representation of
users’ preferences, colored-coded by clus-
ter assignments

Incorporating Clicks

A ‘click through’ event means that a user
not only read but also opened up the full

article in its original website, thereby in-
dicating that she has an even greater in-
terest in this story. To account for this
information, we want to tell the learning
algorithm that the words in this title have
even greater predictive value of a user’s
interest, i.e we want to amplify the tf-idf
values of these words in all future stories.
To accomplish this, we take each word in
the title and multiply its corresponding
‘feature column’ by a given ‘click-factor’.
This gives more weight to future stories
that contain these words in their title.
Experimenting with different values, we
found that a click factor of 1.5 was op-
timal. While incorporating the click fac-
tor did help, the gain was modest (0.02).
Likely, this is because of the fact that a
click through must occur after a read, and
therefore the decision to click through is
probably motivated less by the words in
the title, and more by the content of the
full story. While it is true that the con-
tent itself is dependent on the title, and,
hence, there is some back propagation ef-
fect from the click through to the title, the
fact still remains that the relationship be-
tween the tf-idf values of the title and the
click through event is at best an indirect
correlation.

Results

Due to the fact that we are dealing with
skewed classes, resulting from the rela-
tively few articles read by each user, we
used the F1 score[2] as an indicator of ac-
curacy. Our final results yielded an av-
erage accuracy of 0.46 per user per day.
However, our performance did not im-
prove as we increased the size of our train-
ing set; and while the average user accu-
racy fluctuated around the value of 0.45,
the performance of the system diminished

MacQueen, Kaharamaner, Shotan

CS229 Final Project Predicting News Preferences

for most users.

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Accuracy as measured by daily
F1 score for several users. The red solid
line shows the average F1 score of all users
and is hovering around 0.45 throughout
our testing period

Our basic tf-idf contributed to 0.24 of
the observed accuracy. Incorporating feed
information boosted our accuracy by 0.14.
Clustering yielded another 0.05 and incor-
porating click information increased our
accuracy by 0.02

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Figure 4: Histogram showing the distri-
bution of average daily F1 scores across
users

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

Figure 5: Histogram showing the distri-
bution of daily F1 scores across users for
the first day (in blue), and the last day
(in red)

Conclusion and Future

Work

We consider these results to be highly en-
couraging. We believe users will be satis-
fied with a system that could recommend
articles with a 50% chance that they will
opt to read them. However, we do believe
we could have achieved significantly bet-
ter results if were better able to filter out
the set of stories a user was not exposed
to. Furthermore, due to the limitations of
current natural language processing tech-
nology to extract meaning from a single
sentence, we believe better results could
be achieved by training our algorithms on
the entire text of an article, as opposed to
its title alone. In addition, if we were to
implement our system on a real live data
set, our vocabulary would have to be dy-
namic, incorporating new terms that are
introduced into the media. Such a system
would also need to take into considera-
tion the dimension of time by placing less
weight on stories that appeared in the dis-
tant past, as opposed to stories that ap-
peared in the recent past.

MacQueen, Kaharamaner, Shotan

CS229 Final Project Predicting News Preferences

References

[1] Andrew Ng, CS 229, Class Lecture Topic: Support Vector Machines, NVIDIA
Auditorium, Stanford University, October 21st, 2011

[2] Andrew Ng, CS 229, Class Lecture Topic: Advice on Applying Machine Learning
Algorithms, NVIDIA Auditorium, Stanford University, November 7th, 2011

[3] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin., LIBLINEAR:
A Library for Large Linear Classification, Journal of Machine Learning Research
9(2008), 1871-1874. Software available at http://www.csie.ntu.edu.tw/ cjlin/lib-
linear

[4] eMarketer, (2011, December 12), Mobile Passes Print in Time-Spent
Among US Adults [Online]. Available: http://www.emarketer.com/ PressRe-
lease.aspx?R=1008732

[5] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schtze, Introduction to
Information Retrieval. [Online] Available: http://informationretrieval.org

[6] Andrew Ng, CS 229, Class Lecture Topic: Unsupervised Learning Algorithms,
NVIDIA Auditorium, Stanford University, November 28th, 2011

[7] Andrew Ng, CS 229, Class Lecture Topic: Unsupervised Learning: Clustering,
NVIDIA Auditorium, Stanford University, November 7th, 2011

MacQueen, Kaharamaner, Shotan

