
Detecting Insults in Online Comments

Poorna Krishnamoorthy
Stanford University

poorna@stanford.edu

Rory MacQueen
Stanford University

macqueen@stanford.edu

Sebastian Schuster
Stanford University

sebschu@stanford.edu

Abstract

Abusive or offensive comments on discussion
forums irritate users and stifle fruitful discus-
sions. Moderating forums by hand is cumber-
some and inefficient, thereby creating a need
for an automatic insult detection system. In
this paper we propose a system which com-
bines an SVM classifier with hand-written de-
terministic rules. Features for our classifier are
based on N-gram word models and on the syn-
tactic structure common to most insults. On a
test set of 2235 hand-labeled comments, we
were able to achieve an F1 score of 0.710. We
discuss how our error stems from both the ir-
regular structure of insults and from inherent
problems with sentiment analysis in the NLU
field.

1 Introduction

The high prevalence of abusive and insulting lan-
guage on the Internet contributes to its reputation
of being an “anything goes” environment. While
some people may be tolerant or even appreciative
of the unfiltered nature of online commentary, stud-
ies show that such language can skew people’s per-
ception of products or ideas online (Anderson et al.,
2013), and can even undermine the trust of certain
websites. Since it has become time consuming and
expensive for humans to moderate discussion fo-
rums manually, a pressing need has arisen for a sys-
tem which could automatically detect and flag po-
tentially abusive comments.

Since natural language is inherently subjective
(and abusive language perhaps even more so), a pre-
cise definition of an insult is required. We define

an insult to be an intentionally abusive remark di-
rected at someone else on the forum. The phrase
“George Bush is an asshole”, while it may be con-
sidered offensive to some of his ardent supporters,
is not here considered an insult since it is directed
towards a third-party and not towards someone else
on the forum itself. However, a comment such as
“You are a complete idiot” would be considered an
insult, since the “you” to which this comment refers
is likely someone else on the forum.

In addition to the well-known challenges which
confront any NLP task (word sense disambigua-
tion, natural language inference), the problem of
automatic insult detection has its own difficulties.
Abusive language tends to have a disproportion-
ate amount of spelling or grammatical errors, and
also tends to use non-standard ASCII characters and
symbols in place of alphabetical characters. These
quiddities can make words difficult for a machine to
recognize, even if those same words can still be in-
terpreted by a human (e.g. “you a$$hole”). Insults
can also depend heavily on world knowledge: to un-
derstand that the sentence “you should be like all the
other lemmings and jump off of a cliff” is insulting
requires knowing both that lemmings are generally
considered to be stupid animals and that “jumping
off of a cliff” entails one’s own death. Perhaps the
most challenging aspect of insult detection, and one
that reveals the shortcomings of NLU, is the use of
sarcasm in language. In the context of an online dis-
cussion forum, the phrase “your mother must be so
proud of you” is much more likely to be a sarcasm-
dependent insult than it is to be a genuine statement
of praise. Yet NLU machines currently have no way

of drawing this distinction.

1.1 Applications
The most obvious application of the type of clas-
sifier discussed here would be its use in automatic
moderation of discussion forums. New comments
which our classifier flagged as insults could be for-
warded to a human moderator, who could then make
the final decision about whether to allow the com-
ment to be posted. Presumably, the vast majority of
comments in any given forum are not insults, and as
a result, our classifier is dealing with a dataset that
is heavily skewed towards one of the two classes.
However, if even one of the insulting messages man-
ages to slip through the cracks, an entire discussion
thread can be ruined. For both these reasons, we
chose to heavily prioritize recall over precision as an
evaluation metric. False positives are not such a bad
thing in our scenario, since all comments that have
been flagged will still go through a human modera-
tor. But having just a few false negatives can make
use of our system entirely pointless, since its pur-
pose is to keep the discussion forum clean. The anal-
ogy to airport security helps here: a bomb detection
system should be much less tolerant of false nega-
tives than it should be of false positives.

2 Previous Work

Spertus et al. (Spertus, 1997) were among the first to
conduct research on the topic of automatic insult de-
tection. They use a syntactic parser and hand-written
rules to generate a feature vector for each sentence,
which is then given to a decision tree model to make
a prediction. The hand-written rules tried to exploit
syntactic structures common to insults, e.g. the use
of the second person pronoun followed by a noun
phrase (“You idiot!”), or the the appearance of cer-
tain imperative statements at the start of a sentence
(“Go to hell!”). Such an approach can run the risk
of being overly aggressive in its classification - the
imperative rule, for example, would also pick up on
compliments: “Keep up the good work”, or “Have a
nice day”.

2.1 Machine Learning
More recent work on the topic has used machine
learning classifiers to make predictions (Amir Hos-
sein Razavi, 2010; Xiang et al., 2012). Features

for these classifiers are often based on the appear-
ance and frequency of words drawn from some pre-
defined ‘abusive language’ dictionary (Amir Hos-
sein Razavi, 2010). Since a dictionary alone is often
not exhaustive enough to capture all insults, some
papers instead used a bag-of-words model to cap-
ture the discriminative power of each word in a cor-
pus (Pang et al., 2002). Xiang et al. (2012) used
a bootstrapping approach to identify Twitter users
who tended to tweet offensive comments, and then
applied an LDA model to learn topics from those of-
fensive tweets.

2.2 Sub-Problems

Some studies have tried to focus on specific sub-
problems in the insult detection domain, such as try-
ing to detect just sarcasm (Davidov et al., 2010), or
trying to detect insults that are direct towards a spe-
cific ethnic minority group (Warner and Hirschberg,
2012). Techniques from these research areas can be
aggregated for the general problem of insult detec-
tion. To tackle the problem of misspellings, Sood et
al. (2012) computed the Levensthein edit distance
between each target word and each word in the abu-
sive language dictionary. If a given word had a suffi-
ciently low edit distance, and also did not appear in a
dictionary of English words, then it could be tagged
as profanity.

2.3 Sentiment Analysis

Since the problem of insult detection can itself be
viewed as a special case of sentiment analysis, many
techniques from sentiment analysis are directly ap-
plicable to this field. Pang and Lee (2002) have tried
to amplify the performance of sentiment analysis
models by applying them only to the subjective por-
tions of a given document. They extract the subjec-
tive portions by arranging all sentences into a graph
and then finding (in polynomial time) a minimum-
cost cut through the graph which will divide the ob-
jective and subjective sentences. By applying a stan-
dard sentiment classifier (Naive Bayes) to just the
subjective portions of text, accuracy improves from
82% to 86%.

2.4 Previous Work on the Dataset

To the best of our knowledge, no academic work has
been done so far on the dataset we use. However,

as the dataset was part of a past machine learning
challenge, there are models available that have been
used on the dataset. The best-performing system1

used only N-grams and a small dictionary of profane
words as features for an ensemble classifier consist-
ing of an SVM and a MaxEnt classifier.

3 Data

We worked with a dataset from a past Kaggle com-
petition on detecting insults in online commentary2.
The samples were drawn from a wide variety of
conversation streams, such as the comments section
of various news sites, magazines, and message
boards. The corpus contains 8832 comments la-
beled with a 0 or 1, with 1 representing an insulting
comment and 0 representing a neutral comment. In
addition, the dataset also has the time at which the
comment was made using a 24 hour clock scale. The
comments range in length from just 1 word to a max
of 180 words per sentence, with the average being
37.4 words per comment. The number of characters
in the comment ranges from as little as 4 characters
to a maximum of 6061 characters, with the average
of 180 characters per comment. The comments tend
to be interspersed with non-standard spelling and
grammar - for e.g. ”you are an a$$hole”, ”your full
of chit”. As previously mentioned, for the purposes
of this task, a comment is only marked insulting if
it is directed to a participant in the blog or forum;
comments directed to non-participants such as
celebrities are not considered to be insults. To
illustrate the kinds of comments that are posted, be-
low we offer an excerpt from the training data below.

Insulting Comments
- Even as a troll you are a pathetic failure.
- Howe does it feel to be a Freedom Leech
parasite?
- You are a child
- No people like you are the problem we are
having in this world
- Wow way to tell us how rich you are...stupid

yuppie
1https://www.kaggle.com/c/detecting-insults-in-

social-commentary/forums/t/2744/what-did-you-
use/15951#post15951

2http://www.kaggle.com/c/detecting-insults-in-social-
commentary/data

Neutral Comments
- Conservatives are social leeches and the
scum of the earth.
- Somebody owes you a refund.
- Holy shit, you’re right!
- Are you in France?
- You are not alone!

We used the 3 pre-defined splits of the dataset - a
training corpus to train our classifier, a development
set for testing during development and performing
error analysis, and a held out test set to perform a
final evaluation of our system. The distribution of
insults vs. neutral comments in these three sets is
shown in Table 1. In order to assess how well our

Set % Insults Dataset Size
train 26.57% 3947
dev-test 26.18% 2647
test 48.18% 2235

Table 1: Corpus Statistics.

system performs on real-world data and across do-
mains, we also scraped 984 comments from a poten-
tially controversial video on YouTube on gay mar-
riage3. We hand-annotated the comments to be ei-
ther insulting or neutral. 8.53% of the comments in
this dataset were labeled as insulting.

4 Methodology

Our algorithm is semi-supervised. Given the labeled
comments in our training set, we extract a set of fea-
tures to be used in feature vectors. We constructed
feature vectors for each of the labeled examples in
our training set and used them to build a classifier
model.

4.1 Data Preprocessing

We do a small amount of preprocessing to elimi-
nate url links, html tags such as <div> tags, html
character entities such as and special non-
breakable space character sequences such as \xc2
\xa0, which appeared with a fair amount of regular-
ity in the text. We also normalize words that were
lengthened by character repetition to their shortened

3http://www.youtube.com/watch?v=X-YCdcnf P8

form, e.g. waaaaaaaahhh! to wah!. Curse words
tend to be masked by using non-alphabetic charac-
ters ($#) in place of swears, e.g f*** or t@rd. Some
commonly interchanged non-alphabetic sequences
in words include using @ for ‘a’ and $ for ‘s’ - which
we replace by the letters a and s. Further, we replace
user handles starting with ‘@’ symbols, which usu-
ally indicate that a user directs his or her comment
to another poster by a special tag.

In addition to pre-processing, we tokenize our
comments using the sentiment aware tokenization
method by Christopher Potts 4. Compared to using
a Tree bank tokenizer, this allows us to preserve as
much sentiment information as possible such as sm-
ilies or the excessive use of punctuation.

4.2 Insulting and Abusive Words Dictionary

Some of our features use a list containing insulting
and abusive words. For this reason we compiled
a dictionary of 478 commonly used abusive and
profane words which we collected from an online
source5. We gradually enriched the list based on ob-
servations in our training and development data. The
list also includes deliberately misspelled or masked
curses employed by people to avoid detection.

4.3 Features

4.3.1 N-gram Feature
Since N-gram features are the most commonly

used in topic based text classification, we use uni-
grams and bigrams as word features. Instead of just
counting the occurrences of each word, we use the
term frequency-inverse document frequency (tf-idf)
as the value for each feature. Tf-idf is useful in mea-
suring how important a word is to a comment in a
corpus, by measuring the frequency of the word in
a comment while at the same time discounting very
frequent words in the corpus. The collection of all
comments in our training set serves as the corpus for
computing the tf-idf. We use the top 10,000 word
unigrams and bigrams which we select by perform-
ing a χ2 feature selection test on the training set to
pick the most discriminating features. In addition to
word unigrams and bigrams, we also use character
unigrams and character bigrams.

4http://sentiment.christopherpotts.net/
5http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/

4.3.2 Word Pair Feature
We hypothesized that close proximity of insulting

words from our insulting and abusive words list and
pronouns such as ”you” are a clear indicator of in-
sult, because insulting words are usually directed at
the intended target. This feature assigns a boolean
value of 1 if insulting words are used in the com-
ment in conjunction with pronouns such as “you’re”,
“you”, “yourself”, etc. In the absence of proximity
between pronoun and insulting words, the feature is
assigned a value of 0. For example, the following
examples illustrate cases where this feature would
be useful:

”Coolest president ever? Your a complete waste
of oxygen and resources. Phucking idiot”

”More grammatical errors, Vicky<2. You’re on a
roll today. You are so stupid...”

4.3.3 Capitalization
In online discussions, excessive capitalization,

such as writing the entire comment in upper-case is
considered equivalent to shouting. Some insulting
comments tend to have excessive capitalization, and
we decided to incorporate the number of words in a
comment that have all-caps as a feature value.
Some examples are :

“YOU ARE A RETARD”
“you’re so FUCKING DUMB!”

4.4 Classifier

Because this is a binary classification problem, we
use a SVM classifier with a linear kernel as our core
classifier. The SVM classifier is trained on our pre-
processed training set using the features described
above. To classify new comments, we preprocess
the comment, compute its feature vector and input
this vector to our SVM classifier which returns a
probabilistic score reflecting how likely it is that the
comment is insulting or not.

4.5 Deterministic rules

To further improve recall, we also implemented a
hybrid classifier that augments the predictions of the
SVM classifier with a few hand crafted determin-
istic rules that come into play in edge cases, i.e.
where the prediction of the SVM is slightly below
the threshold, to make a final prediction of whether
a comment is insulting or not. In particular, one such

System Precision Recall F1
Kaggle Winner 0.814 0.649 0.722
SVM 0.812 0.680 0.740
SVM+Rules 0.780 0.714 0.745
SVM+Sentences 0.789 0.693 0.738
SVM+Rules+Sent. 0.759 0.719 0.738

Table 2: Results on development dataset.

rule says that when the SVM returns a prediction be-
low the confidence threshold but greater than 0.3, the
comment is classified as insulting if it begins with
a second person pronoun variant such as “you are”
, “your”, “u r”, “ur”, “you’re” or starts with “go”
or “get”. Similarly, an SVM prediction greater than
0.4, combined with the presence of an abusive word
from our dictionary, would also trigger a rule to clas-
sify the sentence as an insult.

4.6 Sentence-Level Classification

In general, a comment can be considered insulting
if even one sentence in a long comment composed
of several sentences has an abusive intent. For this
reason we implemented the following sentence-level
classifier. Instead of computing the feature vector
for the complete comment, we split the comments
at a sentence-level, compute the features for each
sentence and classify each sentence separately. Our
classifier then assigns each sentence a probability for
being insulting or not. In order to classify the com-
ment, we then take the maximum probability of all
the sentences within a comment. However, this in-
troduces a new problem. Just by chance, it is likely
that one sentence within a comment of many sen-
tences has an insult probability above our threshold,
despite the fact that the comment as a whole is not
insulting. To counter this bias, we also compute the
mean probability over all sentences in a comment.
In case this mean is very low (below 0.2) we assign
the mean probability to the comment instead of the
maximum probability. Thus the comment will be
classified as neutral.

5 Results and Discussion

We evaluated our system using the precision, re-
call and F1 measures on our development and test
dataset. We compared our results to those of the

System Precision Recall F1
Kaggle Winner 0.854 0.558 0.675
SVM 0.822 0.561 0.667
SVM+Rules 0.804 0.608 0.692
SVM+Sentences 0.815 0.599 0.691
SVM+Rules+Sent. 0.802 0.638 0.710

Table 3: Results on test dataset.

winning system in the Kaggle competition. In total
we evaluated four different systems:

• A classifier solely based on the features de-
scribed above and the prediction of a SVM
(SVM)

• A classifier using the SVM predictions and the
hand-written rules (SVM+Rules)

• A classifier using the SVM predictions of each
sentence in the comment (SVM+Sentence)

• A classifier using the SVM predictions of each
sentence in the comment and the hand-written
rules (SVM+Rules+Sentence).

The results for each dataset are presented in Ta-
bles 2, 3 and 4. As we can see our system that
uses the prediction from the SVM on the sentences
combined with the deterministic rules has on all
datasets the highest recall. While the winning sys-
tem in the Kaggle competition has a higher preci-
sion on the Kaggle datasets, our system seems to
generalize better as we have a statistically signifi-
cant (using a McNemar test) higher precision and
recall on the YouTube dataset. Thus in terms of
maximizing recall our system using rules and clas-
sifying on a sentence level performs better. Other-
wise the SVM+Sentences system seems to give the
best trade-off between precision and recall, espe-
cially on more real-world data such as the YouTube
comments.

As already discussed in the introduction, a sys-
tem with a very high recall and a reasonably high
precision could take away a lot of work from human
moderators as they would only have to check com-
ments that are potential insults. Further, one has to
keep in mind that the majority of comments are usu-
ally not insulting. Only around 8% of the YouTube

System Precision Recall F1
Kaggle Winner 0.513 0.464 0.488
SVM 0.512 0.500 0.506
SVM+Rules 0.475 0.560 0.514
SVM+Sentences 0.543 0.679 0.603
SVM+Rules+Sent. 0.487 0.690 0.571

Table 4: Results on YouTube dataset.

500 1000 1500 2000 2500 3000 3500 4000

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Learning curve

Training examples

− SVM+R+S

− SVM

Figure 1: Learning curves for SVM (blue) and
SVM+Rules+Sentences (red) systems. The dotted lines
show precision and the solid lines show recall. Precision
and recall were measured on the development set.

comments on a video discussing a very controversial
topic were insults. Thus even with a relatively low
precision of around 50 % a human moderator would
only need to check 16% of all comments.

The learning curve in Figure 1 also indicates
that our system using rules and operating on the
sentence-level depends less on the amount of train-
ing data compared to using only the SVM predic-
tions. However, as none of the lines seem to have
reached a plateau, we could most likely improve our
system further by training it on more data.

5.1 Feature Analysis

We verified that all the features we are using im-
proved our classifier by doing a leave-one-out fea-
ture analysis on the development set. In order to rule
out the possibility that certain outliers in our data
might make a feature seem useful, we ran the model
on 10 bootstrapped data sets. Each of these data sets
was 80% the size of the development set and gener-

Held-out feature Precision Recall F1
Word Pair 0.815 0.650 0.723
Word N-gram 0.772 0.621 0.689
Character N-gram 0.772 0.668 0.716
Capitalization 0.805 0.684 0.740
All 0.806 0.686 0.741

Table 5: Results of leave-one-out feature analysis.

N N-grams
1 bitch, dumb, idiot, loser, moron, ’re, shut,

stupid, you, your
2 an idiot, are an, ass nigga, go back, shut

up, you are, you dumb, you idiot, you’re,
you really

Table 6: Most discriminative N-grams.

ated by sampling with replacement from the devel-
opment set. We then computed the recall and preci-
sion by taking the mean over the 10 runs. A feature
was considered useful if the recall increased while
the F1 score did not decrease. The mean precision
and recall values and the corresponding F1 scores
obtained by using the SVM system are presented in
Table 5.

We also looked at the most discriminative N-
grams according to a χ2-test. The top 8 discrim-
inative unigrams and bigrams are presented in Ta-
ble 6. Interestingly, all of them are positive fea-
tures, i.e. if they occur in the comment, they in-
crease the probability of that comment being an in-
sult. We can also see that the most discriminative
feature seems to be the use of profanity and phrases
involving “you”, such as “you are”, which shows
that our hand-written rules can also be inferred from
the data.

5.2 Error Analysis

We examined the errors our system was making
when classifying comments in the development and
the YouTube dataset and we noticed that most errors
fit in one of the following categories.

5.2.1 Negative Adjectives
Many insults that our system was not able to de-

tect contained negative adjectives rather than pro-
fane words. Thus if the adjective was not observed

in the training data our system had no information
on whether the content was insulting or not. Exam-
ples include “Is that why Obama has borrowed more
money as president in 3 years than any other sitting
president in US history? You are delusional.” or
“You seem very unintelligent...”.

5.2.2 World Knowledge

Other insults that our system failed to detect were
those contingent upon world knowledge. In order to
understand that the comment “Take your meds and
go back in your cave.” is insulting, one needs to
know that asking another person to take their med-
ication is a way of accusing another person of be-
ing mentally ill and that asking another person to go
back to their cave has the connotation that they are
simple-minded like a caveman. Our system failed
to detect these sorts of comments because they do
not contain any profanity and a lot of the words used
were not observed in the training date. Further they
do not contain any lexical peculiarities.

5.2.3 Sarcasm

Another class of problematic comments are sar-
castic comments such as “Your mother must be so
proud of you!” or “Actually the opposite. But keep
assuming stuff about people you dont know, makes
you look smart.”. These comments contain a lot of
positive words like “proud” or “smart” that normally
occur in neutral comments but, as they are meant
sarcastically, the positive denotation of the words
becomes negative. Our classifier, however, is only
able to determine that the comment contains a lot
of positive words and thus assumes the more likely
case that the comments are actually neutral.

5.2.4 Use of Profane Language

Many false positives were caused by comments
that contain profane words, such as “a mother fuck-
ing quiche”. As profane words are a very good in-
dicator for insults and we explicitly added a hand-
written rule that when in doubt marks comments
containing profanity as being insulting, our system
classifies almost all comments containing profanity
as being insulting as long as they don’t also contain
a lot of positive words.

5.2.5 Insults Directed at Other People
Many other false positives come from comments

that are insulting towards a certain group of people,
who are not necessarily participating in the discus-
sion. The comment “gay guys are sick” for example
is clearly offensive to homosexuals but it is not di-
rected to other discussion participants. Our classifier
potentially marks this comment as insulting because
of the phrase “are sick”, which directed at another
participant would be an actual insult. Another ex-
ample is “f u ron paul sell out schill bastard. rand,
you’re no dif than any sob on the hill! romney.. burn
in hell! id sooner vote for satan”. In this case the
commenter is attacking Ron Paul (who is probably
not a participant in the discussion) but our system is
only able to detect that a specific person is attacked
and assumes that this person is another poster.

5.2.6 Incorrect Labels
A large number of incorrectly classified com-

ments are also based on the fact that we believe that
many comments in the Kaggle dataset are actually
mislabeled. The comment “Because too many id-
iots sue to make money.” for example does not seem
to be insulting to any specific poster but is labeled
as being an insult. On the other hand, the comment
“Get you head out of your a z z!!!!!!!!!!!” is in our
opinion clearly attacking another poster, yet it is not
considered an insult according to the annotators.

5.3 Ideas that did not work

In order to tackle some of the errors described in
the previous section, we implemented several other
features. One seemingly promising approach was to
take syntactic features into account. For this rea-
son we used the Stanford Parser (De Marneffe et
al., 2006; Klein and Manning, 2003) to get the con-
stituency and dependency parses for each sentence.
We noticed that imperatives such as “Go to hell!”
or “Get a life!” often characterize insults. Thus we
added a feature that checked for the presence of a
verb phrase in the beginning of the sentence. Fur-
ther we added a feature that checked which POS tag
occurred after “you” as we observed that “you” fol-
lowed by a noun phrase such as “you idiot” often
characterizes insults. Additionally, we also tried to
use the dependency parse to try to infer whether pro-
fane words actually modify a second person pronoun

or something else such as the “quiche” in one of the
examples above. However, all these features made
the performance of our system worse. We suspect
that the main explanation for this is that many of the
parses are simply wrong, perhaps due to the fact that
lots of the sentences are grammatically malformed.
For example, in the sentence “You retarded idiot!”
the parser annotates “retarded” as a verb phrase,
when it is in fact part of the noun phrase ”retarded
idiot”. Consequently, the dependency parse is also
wrong. Had the author structured the sentence cor-
rectly - ”You are a retarded idiot” - the parser would
have been correct.

We also noticed that many words were (often in-
tentionally) misspelled, so we used a simple spelling
correction algorithm6 to correct all misspelled words
using minimal edit distance. However, this algo-
rithm is based on the assumption that the misspelling
is caused by an accidental typo, rather than by an
conscious intent to mask a word known to be rude.
As a result, many corrections changed the meaning
of the comment. Further, our classifier worked bet-
ter when it was able to pick up lexical peculiarities
such as “f**k” instead of replacing these obfusca-
tions with the correct word.

To try to the capture the negative sentiment in in-
sults that do not contain profanity, we implemented
a feature that calculated the semantic orientation of a
comment. This was done by calculating the PMI be-
tween each word in the comment and each word in
two sets of pre-defined positive and negative words
used by Turney et al. (2003). However this feature
also lowered both precision and recall which is why
we did not include it in our final system. We sus-
pect that our training corpus was too small to learn
meaningful semantic orientations.

6 Conclusion and Future Work

We presented a system that combines an SVM clas-
sifier and hand-written rules for detecting insults
in online comments. Further, we showed that by
performing the classification on a sentence-specific
level instead of classifying the complete comment,
we were able to increase precision and recall over
other state-of-the-art insult detection systems on
real-world data. However, our analysis showed that

6http://norvig.com/spell-correct.html

our system primarily detects insults containing pro-
fanity, very common insults and insults that follow
simple patterns such as “You are...” or “Go ...” and
still misses more complicated and subtle insults. De-
spite the fact that simple syntactic rules did not work
on our data and we had problems obtaining reliable
parse trees, we still assume that by doing better pre-
processing and presumably some post-processing of
the constituency parses, one could extract common
syntactical patterns that are very characteristic of in-
sults, so future work should be done on this topic.

Our analysis also showed that the existing data
seems to be very noisy and does not cover the va-
riety of insults that exist. Thus future work on this
topic should also focus on compiling a more reli-
able and more exhaustive dataset. Further, as the
sentence-level classification approach has proven to
be very effective, one should also consider doing a
sentence-level annotation of the training data as so
far we are still using the features of entire comments
to train our model.

7 Acknowledgements

We would like to thank Bill MacCartney and Chris
Potts for their valuable advice and guidance.

References
Diana Inkpen Amir Hossein Razavi. 2010. Offen-

sive language detection using multi-level classifica-
tion. pages 16–27.

Ashley A. Anderson, Dominique Brossard, Dietram A.
Scheufele, Michael A. Xenos, and Peter Ladwig.
2013. Crude comments and concern: Online incivil-
ity’s effect on risk perceptions of emerging technolo-
gies. Journal of Computer-Mediated Communication,
page n/a–n/a.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using twitter hashtags
and smileys. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters,
pages 241–249. Association for Computational Lin-
guistics.

Marie-Catherine De Marneffe, Bill MacCartney, and
Christopher D Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of the 41st An-
nual Meeting on Association for Computational Lin-

guistics - Volume 1, ACL ’03, page 423–430, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using ma-
chine learning techniques. In Proceedings of the ACL-
02 conference on Empirical methods in natural lan-
guage processing-Volume 10, pages 79–86. Associa-
tion for Computational Linguistics.

Sara Owsley Sood, Judd Antin, and Elizabeth F
Churchill. 2012. Using crowdsourcing to improve
profanity detection. In 2012 AAAI Spring Symposium
Series.

Ellen Spertus. 1997. Smokey: Automatic recognition of
hostile messages. In In Proc. IAAI, pages 1058–1065.

Peter D. Turney and Michael L. Littman. 2003. Mea-
suring praise and criticism: Inference of semantic
orientation from association. ACM Trans. Inf. Syst.,
21(4):315–346, October.

William Warner and Julia Hirschberg. 2012. Detect-
ing hate speech on the world wide web. NAACL-HLT
2012, page 19.

Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and Car-
olyn Rose. 2012. Detecting offensive tweets via topi-
cal feature discovery over a large scale twitter corpus.
In Proceedings of the 21st ACM international con-
ference on Information and knowledge management,
pages 1980–1984. ACM.

